Targeted Therapy in an Era of Genomic Medicine

George W. Sledge MD
Stanford University
Why Do Women Die of Breast Cancer?

• Bad biology
• Avoidable deaths
Important subsets of breast cancers defined by molecular markers and by clinical treatment options

Lesson: Breast cancer is a family of diseases, not one disease.
Inhibition of Estrogen-Dependent Growth

Estrogen biosynthesis

Antiestrogens

Aromatase inhibitors

Inhibition of cell proliferation
Estrogen receptor (ER) is the target of endocrine treatment and is expressed in ~70% of breast cancers

- Endocrine treatment is an effective targeted therapy for ER+ patients
- However, a significant fraction of patients develop resistance

Recurrence

- 13% recurrence
- 33% recurrence

BC mortality

- 10% BC mortality
- 24% BC mortality
Patients with Disease Progression on One Hormone Therapy May Respond to Another Hormone Therapy

- An optimal sequence of hormone therapies has not been defined

Resistance to Hormonal Therapy: Cross-Talk
Crosstalk between ER and mTOR Signaling

- mTORC1 activates ER in a ligand-independent fashion\(^1\)
- Estradiol suppresses apoptosis induced by PI3K/mTOR blockade\(^2\)
- Hyperactivation of the PI3K/mTOR pathway is observed in endocrine-resistant breast cancer cells\(^3\)
- mTOR is a rational target to enhance the efficacy of hormonal therapy

BOLERO-2 Primary Endpoint: PFS Central Assessment

HR = 0.36 (95% CI: 0.27–0.47)
Log rank P value = 3.3 x 10^{-15}

EVE + EXE: 10.6 Months
PBO + EXE: 4.1 Months

Presented by J. Baseiga at the 2011 European Multidisciplinary Cancer Congress (ECCO/ESMO), September 26, 2011. Abstract: 9LBA.
CDK 4/6 Inhibition: Mechanism of Action
PD 0332991 + Letrozole
Progression Free Survival

HR = 0.37 (CI 0.21- 0.63)
p < 0.001

PD + LET: 26.1 months
LET: 7.5 months
Oncotype DX 21 Gene Recurrence Score (RS) Assay

16 Cancer and 5 Reference Genes From 3 Studies

RS = + 0.47 x HER2 Group Score - 0.34 x ER Group Score + 1.04 x Proliferation Group Score + 0.10 x Invasion Group Score + 0.05 x CD68 - 0.08 x GSTM1 - 0.07 x BAG1

Category	RS (0 – 100)
Low risk | RS < 18
Int risk | RS ≥ 18 and < 31
High risk | RS ≥ 31
B-20: Absolute % Increase in DRFS at 10 Years

- Benefit of Chemo Depends on RS

- Low RS < 18
 - n = 353

- Intermediate RS 18-30
 - n = 134

- High RS ≥ 31
 - n = 164

% Increase in DRFS at 10 Yrs (mean ± SE)
The HER Family of Receptors

Ligands
- TGF-α
- EGF
- Epiregulin
- Betacellulin
- HB-EGF
- Amphiregulin

Tyrosine kinase domain

No ligand-binding activity*

Erb-B1 HER1

Erb-B2 HER2

Erb-B3 HER3

Erb-B4 HER4

Heregulin (neuregulin-1)
Epiregulin
HB-EGF
Neuregulins 3, 4

*HER2 dimerizes with other members of the HER family.

Fluorescence In Situ Hybridization Test Measures HER2 Gene Amplification

- FISH tests are designed to detect amplification of the HER2 gene.
Joint Analysis: Long-Term Follow-Up

Perez, E et al. J Clin Oncol 2014
Post-Trastuzumab Therapeutic Options:

1. Block kinase
 - lapatinib
 - neratinib
2. Prevent dimerization
 - pertuzumab
3. MAb-toxin delivery
 - T-DM1
4. Downstream blockade
 - PI3K, mTOR
HERs Hook Up
Pertuzumab Prevents Hook-Ups

Herman ten Kate: The Chaperone
Targeted Therapies for HER2+ Breast Cancer: Trastuzumab, Lapatinib, and T-DM1

- **Trastuzumab**
- **Lapatinib**

T-DM1

- Antibody: Trastuzumab
- Cytotoxic: Emtansine
- Stable linker: MCC

- Inhibition of microtubule polymerization
- Emtansine release
- Internalization
- Lysosome

Breast Cancer: Subtypes Reflect Genomic Complexity

Genome-wide Circos plots of somatic rearrangements

Table 1 | Analysis of the top somatically aberrated genes influencing expression

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene</th>
<th>gband</th>
<th>SNV or indel</th>
<th>HLAMP</th>
<th>HOMD</th>
<th>Events</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TP53</td>
<td>17p13.1</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>2242</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PIK3CA</td>
<td>3q26.32</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>441</td>
<td>1 x 10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>NRAS</td>
<td>1p13.2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>271</td>
<td>4 x 10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>EGFR</td>
<td>7p11.2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>220</td>
<td>4 x 10^{-4}</td>
</tr>
<tr>
<td>5</td>
<td>RB1</td>
<td>13q14.2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>184</td>
<td>5 x 10^{-4}</td>
</tr>
<tr>
<td>6</td>
<td>PGM2</td>
<td>4p14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>172</td>
<td>5 x 10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>PRPS2</td>
<td>23p22.2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>171</td>
<td>5 x 10^{-4}</td>
</tr>
<tr>
<td>8</td>
<td>PTEN</td>
<td>10q23.31</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>5 x 10^{-4}</td>
</tr>
<tr>
<td>9</td>
<td>PRKCE</td>
<td>2p21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>136</td>
<td>7 x 10^{-4}</td>
</tr>
<tr>
<td>10</td>
<td>NR3C1</td>
<td>5q31.3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>130</td>
<td>7 x 10^{-4}</td>
</tr>
<tr>
<td>11</td>
<td>CREBBP</td>
<td>16p13.3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>119</td>
<td>8 x 10^{-4}</td>
</tr>
<tr>
<td>12</td>
<td>CS</td>
<td>12q13.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>108</td>
<td>0.0011</td>
</tr>
<tr>
<td>13</td>
<td>MAN2A2</td>
<td>15q26.1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>104</td>
<td>0.0012</td>
</tr>
<tr>
<td>14</td>
<td>HMGC2</td>
<td>1p12</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0.0013</td>
</tr>
<tr>
<td>15</td>
<td>HEXA</td>
<td>15q24.1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>97</td>
<td>0.0013</td>
</tr>
<tr>
<td>16</td>
<td>ADCY9</td>
<td>15p13.3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>91</td>
<td>0.0017</td>
</tr>
<tr>
<td>17</td>
<td>OR4N4</td>
<td>15q11.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0.0017</td>
</tr>
<tr>
<td>18</td>
<td>LCLAT1</td>
<td>2p23.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>85</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>DGK1</td>
<td>7q33</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>0.0022</td>
</tr>
<tr>
<td>20</td>
<td>CYP2A6</td>
<td>19q13.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0.0024</td>
</tr>
<tr>
<td>21</td>
<td>JAK1</td>
<td>1p31.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>0.0026</td>
</tr>
<tr>
<td>22</td>
<td>POLP1A</td>
<td>1p11.2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>78</td>
<td>0.0026</td>
</tr>
<tr>
<td>23</td>
<td>PLD1</td>
<td>3q26.31</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>0.0038</td>
</tr>
<tr>
<td>24</td>
<td>IDH3B</td>
<td>20p13</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>68</td>
<td>0.004</td>
</tr>
<tr>
<td>25</td>
<td>PAPPS2</td>
<td>10q23.2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>67</td>
<td>0.0041</td>
</tr>
<tr>
<td>26</td>
<td>PRKX</td>
<td>23p22.33</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>65</td>
<td>0.0046</td>
</tr>
<tr>
<td>27</td>
<td>TP5H2</td>
<td>12q21.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>65</td>
<td>0.0046</td>
</tr>
<tr>
<td>28</td>
<td>UGT2B17</td>
<td>4q13.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>63</td>
<td>0.0053</td>
</tr>
<tr>
<td>29</td>
<td>PRM2</td>
<td>2p25.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>0.0072</td>
</tr>
<tr>
<td>30</td>
<td>ATM</td>
<td>11q22.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>0.0084</td>
</tr>
<tr>
<td>31</td>
<td>CLCA1</td>
<td>1p22.3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0.009</td>
</tr>
<tr>
<td>32</td>
<td>PRKCE</td>
<td>1p36.33</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>0.0095</td>
</tr>
</tbody>
</table>

Single Nucleus Genome Sequencing
Triple-Negative Breast Cancer

Nature 512; 155-160, 2014
TNBC Heat Map derived from Single Nucleus Genome Sequencing

374 clonal mutations
154 subclonal mutations

Three subpopulations:
A1: 66
A2: 52

23.44% damage protein function

Nature 512; 155-160, 2014
Breast Cancer as Whack-a-Mole

Rapid emergence of compensatory mechanisms of resistance
Chaos Reigns
25 Patients with HER2 Somatic Mutations

- Each blue circle represents a patient.
- From 8 publications with a total of 1,499 patients.
- 20% of patients have mutations at amino acids 309 or 310.
- 68% of patients have mutations at amino acids 755-781.
HER2 Somatic mutations

• Occur in $\leq 2\%$ of breast cancers
• Activating mutations
• IHC and FISH negative
• Sensitive to small molecules but not trastuzumab in preclinical models
Phase II Clinical Trial of Neratinib for HER2 Mutation Positive Breast Cancer

Study Therapy
Neratinib 240 mg P.O. daily
days 1-28 each cycle*

HER2 gene amplification negative
Stage IV Breast Cancer

Tumor DNA Sequencing for HER2 Mutation

Mutation Absent
Not Eligible for Study Therapy

Mutation Present
Study Therapy
Neratinib 240 mg P.O. daily
days 1-28 each cycle*

Restage every 2 cycles
Continue therapy until disease progression,
or unacceptable adverse events.

Participating Institutions
1. Washington University School of Medicine
2. Dana-Farber Cancer Institute
3. Memorial Sloan-Kettering Cancer Center
4. Univ. of North Carolina
5. Stanford University

San Antonio Breast Cancer Symposium – December 4-8, 2012
The Mutational Landscape of Breast Cancer

• 100 breast cancers genomes analyzed
• Driver mutations found in at least 40 different cancer genes
• 73 different combinations of driver mutated cancer genes
• 28 cancers had a single driver mutation, but some had as many as 6 driver mutations

Combinations are Hard

- Toxicity increases significantly with each added drug
- New toxicities occur
- Cost of regimen increases dramatically
 --$8-10K/drug/month
The Orphan Disease Era

- A myriad of rare diseases
- Many genomic drivers
- IT-driven
- Complex biology
- Uncertain therapeutics
- Phase III trials difficult
Cancers Live in Neighborhoods

Can We Enlist the Neighborhood Watch?
T Cell Attacking a Cancer Cell

Why Doesn’t the Immune System do it’s Job?
The Immune System
At the cellular level

Turning up The Activating Blocking the Inhibiting
Augmenting Antibody Activity with Anti-CD137 MAb

A. Tumor cell

B. Tumor cell
 NK cell

C. Tumor cell
 NK cell

D. Tumor cell
 NK cell
Anti-CD137 agonistic mAb enhances anti-breast cancer activity of trastuzumab in vivo while retaining HER2 specificity against HER2-overexpressing breast cancer cell lines and a primary breast tumor.
Conclusions

• Segmenting breast cancer has led to real advances via targeted therapies
• Resistance continues to be a problem
• Improved understanding of resistance → new therapeutic approaches
• Genomic analyses may help
• Novel immunotherapeutic approaches
Thank You